
comprise /~-~-= 7.10 -8 W.Hz -I/2. For He I at P = 2.10 -2 W.cm -2, where helium boils on the 
sensor itself, fluctuations increase to /A~ = 8.10 -5 W~ -I/2. 

NOTATION 

R'f, resistance of square; R, resistance of temperature sensor; AR/AT, slope; I, bias 
current; P, power dissipation density; f, frequency; T, temperature; AT 2, mean square of tem- 
perature fluctuations; /AT 2, effective value of temperature fluctuations; /AU 2, effective 
value of noise voltage; AW 2, mean square power fluctuation; /AW 2, effective value of power 
fluctuation; G, heat transfer coefficient; RT, thermal resistance. 
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DYNAMIC DISLODGEMENT OF A VISCOPLASTIC LIQUID FILM 

Z. P. Shul'man, V. I. Baikov, 
and S. L. Benderskaya 

UDC 532.135 

A solution is obtained for the problem of shaking a viscoplastic film of limiting 
thickness off a flat or cylindrical surface moving in accordance with an exponen- 
tial law. 

A film of viscoplastic liquid on a vertical surface is characterized by the limiting 
static value of the thickness at which the film still will not flow under the influence of 
gravity. One method of dislodging such a film is to vibrate the wall. It is used, for ex- 
ample, in vibratory filters to remove the residue. ~ 

The limiting thickness of the film R h is determined from the balance of friction and 
gravity forces. For a vertical Cylindrical body 

Rh:R (1-+- 2T-J~)~, (i) 
--pgR 

where R is the cylinder radius; To is the yield limit; p is density; g is the acceleration of 
gravity; the plus sign is taken for a film on the outside and th~ minus sign for a film on 
the inside surface of the cylinder. 

Let us first Consider the case (To/pgR) << I. Then the cylindrical surface may be re- 
garded as plane. We assume that the wall, coated with a film of limiting thickness, is mov- 
ing in the direction of the gravity force at a constant velocity Uo and at the initial in- 
stant of time (t' = 0) begins to decelerate, its velocity varying in accordance with the law 

u = uof ( t ' ) ,  

where f(O) = I. As a result, two flow zones develop in the film: In the wall region, where 
the stresses exceed mo, we have viscoplastic flow; elsewhere the stresses are less than mo 
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Fig. I. Time dependence of the width of the vis- 
coplastic flow zone (continuous curves) and of the 
velocity of the quasisolid core (dashed curves) 
for S = 2; A: i) I; 2) 5; 3) 50; 4) ~. 
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Fig. 2. T~e dependence of the veloci ty of the 
quasisolid core for a f i lm flowing off  the inside 
(a) and outside (b) surfaces of a cylinder at S = 
0.24; A: i) i; 2) 2; 3) 5; 4) i0; 5) 50; 6) =. 

and the motion of the liquid is quasisolid. The case in which the wall stops instantaneously 
was examined in [i, 2]. 

For a Schwedoff--Bingham liquid 

(sigh'c) T = "% .--k ~p (sign~,) 

(y = ~u/~r is the shear rate, pp is the plastic viscosity) the problem reduces to the follow- 
ing equations of motion and boundary conditions 

03_ = ~p. 0~u 
- - -  -'-- g ,  o < , g  < y,, ( t ' ) ;  

or' p Oy ~ 

du.__~o = g To , y~ (t') ~ y <~ h; 
dr" p [h - -  y,~ (t')] 

a u .  t' , u [yo( t ' ) ,  t ' l  = U o ( t ' ) , ~ t y o (  ) t'l = O; ( 2 )  

u (O,t') = U - Uof  (t'), u (y,O) : Uo; 

uo (o) = Uo, v,, (o) --- o .  

Here h = To/pg is the film thickness; y~(t') is the coordinate of the moving boundary of the 
viscoplastic and quasisolid zones; uo(t') is the velocity of the quasisolid core of the flow. 
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Fig. 3. Time dependence of the coordinate of the 
boundary of the quasisolid zone for S = 0.25; 
A: I) i; 2) 2; 3) 5; 4) i0; 5) 50; 6) =; a) out- 
side surface; b) inside surface. 

We introduce the dimensionless variables and parameters 

Then system ( 2 )  

=- - - ,  :-. - - -  V =- ~-~, V o=.. --, l-- S =  - - - .  
h n ~ U o ph 2 ' upU o 

takes the form 

Ov O2v 
- + S 0<~<~o; 

at o~ 2 
(3) 

(4) dr,_2_ _ _ f i ~ 9  , E o ~ E ~ 1; 

dt 1 -- ,  ~o 

Ov .~ , f v ( L , t )  Vo(O,~( .o  ) = o, v(O,O = f(t); (5)  

v ( ~ , O )  == !, vo (O)= :  1, ~o(0) = O. ( 6 )  

Finding the exact solution presents serious mathematical difficulties; accordingly we 
will seek an approximate solution, We approximate the velocity profile by means of the ex- 
pression 

~ ~ '  
" ~ O G ~ < L ,  ( 7 )  V (~,t) = r - -  2 ([ - -  Vo) ~o  q-  ([ - -  v~ ~ o '  ~o < ~ - ~  1, 

V 0 

which satisfies boundary conditions (5). 

We satisfy Eq. (3) in the mean: 

~0 

0 

t'i  ) 
0 

After integration, using (4) and (7), we arrive at the following equation for the bound- 
ary of the quasisolid and viscoplastic zones: 

$o d f  2S~ o d~ o 6 ~ 3S~o ; q-  - ( 8 )  

dt ~o [ - - v  o f - - o  o dt ( f - - V o ) ( 1 - - ~ o )  

1195 



Ql 

a,t 

a 
Fig. 4. 

S 

/a 

t 

g 

3 

L 
ZO 30 40 /l  

Dependence of the mass of liquid shaken 
off on A for: i) S = 0.25, KR = 0.5 (inside sur- 
face); 3) S = 0.25, KR = 0.5 (outside surface); 
2) S = 0.25; 4) 5; 5) I0 (plate). 

System of equations (4), (8) for vo (t) and to (t), with initial conditions (6), was solved 
numerically on a Minsk-22 computer for the case 

[ -- exp (-- At). (9) 

Some of the results are presented in Fig. i. The viscoplastic region initially increases 
reaches a maximum, and then decreases. The velocity of the quasisolid zone relative to the 
plate Wo = vo -- exp(--At) increases from zero to a maximum, then falls monotonically. As the 
deceleration parameter A increases, the velocity maximum grows and is shifted to the left, 
tending in the limit to the case in which the wall stops instantaneously. 

The mass of liquid shaken off the wall per unit width of film is given by 

0 0 0 

and is represented in Fig. 4. As the parameter h increases, so does the amount of liquid 
shaken off. The rate of increase is particularly significant up to A ~ i0, after which the 
increase in Q is very slight. Thus, for example, the values of Q for A = i0 at S = 0.25 and 
I0 are 96.5 and 79%, respectively, for instantaneous stopping of the wall. Increasing the 
plasticity parameter S reduces the amount of liquid shaken off. 

When (ro/pgR) % i the curvature of the surface must be taken into account. In order to 
solve the problem of a film of viscoplastic liquid shaken off a vertical cylindrical surface 
we use the method described above. 

We then obtain 

§ -- 2Vo~ o , _  ~ - - 1  -o) f - v o  v(~, t) = ! [ ~  v~ 2 ~ (  - -  1 �9 (~-o-- i) ~ a ~ + (~o )2 ~z; (ii) 

moreover, 

=_=d~o +3Sln~o___ 6~-olnE o ~  . _ 12 1--~o. .df_.__l--~o( S , 4S~o~ ) ,  ( 1 2 )  
dt v o - -  f (1 - -  ~o) a 1 - -  ~o Vo--- f dt Vo " -  f K-P  -v 4 - ~  -,- 2 K R  ~ 1 

dv o _ S 2S% o (13)  
dt K R  4- gr) ~ 1 4- 2 K R  

~o(0) = 1, vo(O ) = 1. (14)  

The mass of liquid shaken off is given by the expression 

% 

Q == 6- (v~ - -  f) [12KR -T- 4 4- (~o + 1)21 dl. 

0 

(15) 
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Here G = r/R, Go = r~/R, KR = To/0gR is the surface-curvature parameter. The upper sign in 
expressions (12), (13), and (15) relates to the inside-face problem, the lower sign to the 

outside-face problem. 

The results of a numerical integration are presented in Figs. 2 and 3. The behavior of 
the velocity Wo of the quasisolid core relative to the wall and the zone boundary Go is qual- 
itatively similar to the plane case. The other parameters being equal, the maximum values 
W~ ax and Ii -- g~ax I for a film on the inside surface of a cylinder are higher and displaced 
to the right as compared with the case of flow off the outside surface. In this connection 
the mass of liquid shaken off is greater for the film flowing off the inside surface of the 
cylinder (Fig. 4). As the deceleration parameter A increases, so does the mass of liquid 
shaken off. The rate of increase is particularly significant up to A ~ i0. 

1. 
2.  
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VARIATIONAL SOLUTION OF EQUATION OF NONLINEAR MASS 

AND ENERGY TRANSFER 

L. S. Kalashnikova, I. N. Taganov, 
and V. P. Volkova 

UDC 66.015.23:519.34 

The use of a variational principle of Hamilton type is considered for problems of 
nonlinear mass transfer in a semibounded plate with constant and variable diffu- 
sional properties. 

In complex cases associated with heat and mass transfer in systems with chemical trans- 
formations or polymerization processes, in biological systems, and in special cases of cata- 
lytic processes, significant deviation from the Fourier and Fick laws is observed. Processes 
of heat and mass transfer of this kind may be mathematically described by an equation of the 
form 

-&P - - d i v ( w [ )  - ,t* 02q~ :. div [/e (q') (grad q')"] ' F(cf), ( 1 )  

zz~ 1. 

This equation may be obtained on the assumption that the flux of material is determined 
by an expression of the form [I] 

In the case of heat transfer, @ represents the thermal energy; in the case of mass trans- 
fer, the concentration. For the heat-transfer equation F(~) is a heat source or sink and for 
the mass-transfer equation a mass source or sink due to chemical transformations. 

Consider the case of mass and energy transfer in a semibounded plate with variable dif- 
fusional properties in the presence of a chemical reaction; in this case, Eq. (i) takes the 
form 

OCoT ~- 0 [D*(C)( O-~x )"] -?kCm' n ~  l' m=: l' 2' _ ( 2 )  

where k is the rate constant of the chemical reaction; m is the order of the chemical reac- 
tion. In the general case it is expedient to assume that the order of the reaction may be 
either integral or fractional. 
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